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Introduction

Statement of the problem

Let

» X be a holomorphic function space on the unit disk D,

»  be a planar domain (i.e., a connected and open subset of C).
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Introduction
Statement of the problem

Let
» X be a holomorphic function space on the unit disk D,
»  be a planar domain (i.e., a connected and open subset of C).

Problem: Decide whether Hol(ID, 2) := {Holomorphic maps f: D — Q} C X or not.

Definition
Q) is said to be an X-domain if Hol(D, Q) C X.

Example. Let H* be the Hardy space of all bounded holomorphic maps on ID. It is easy to
see that ) is a H*°-domain if and only if it is bounded.

Today: X = Bloch B, BMOA, Nevanlinna N, Smirnov N*, Hardy H?, Bergman A%L.
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A “no-example”

The problem might not be interesting for all holomorphic functions spaces X.
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Let D be the Dirichlet space. That is, the space of all holomorphic maps f: D — C such that

[17@F A < +os
D

For every z € C and every R > 0 there exists a map f: D — D(z, R) such that f ¢ D.
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A “no-example”

The problem might not be interesting for all holomorphic functions spaces X.

Let D be the Dirichlet space. That is, the space of all holomorphic maps f: D — C such that
[17@F A < +os
D

For every z € C and every R > 0 there exists a map f: D — D(z, R) such that f & D.
Consequence: There are no D-domains.
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Reformulation

Definition

We say that X enjoys the subordination property if f oy € X whenever f € X and
@: D — D is holomorphic.
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Reformulation

Definition

We say that X enjoys the subordination property if f oy € X whenever f € X and
@: D — D is holomorphic.

Some classical spaces X enjoy this property. For instance, they do if composition operators are
bounded on X.

Assume that X enjoys the subordination property and that  is hyperbolic (i.e., its
complement possesses at least two points). Then, the following are equivalent:

@ Qs an X-domain.
@ Some (hence, all) universal covering map fo: D — Q belongs to X.

Recall that, for a hyperbolic domain €2, a universal covering map D
fa: D — Qis a holomorphic map with the following property: / lfQ
For every f € Hol(ID, 2) there exists ¢ € Hol(D, D) such that f = foop. 0




PART I

Classical answers for classical spaces



Let B be the Bloch space. That is, the space of all holomorphic maps on D for which

sup(l — |z|2) |f’(z)‘ < +o0.
zeD
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sup1—|z |f ‘<+oo.

Theorem (Seidel, Walsh — 1942)

Let © be a planar domain. For z € €, consider R(z) = sup{r > 0: D(z,r) C Q}. The
following are equivalent:

@ Qs a B-domain.

@ sup,cq R(z) < +o0.
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Let B be the Bloch space. That is, the space of all holomorphic maps on D for which

sup1—|z |f ‘<+oo.

Theorem (Seidel, Walsh — 1942)

Let © be a planar domain. For z € €, consider R(z) = sup{r > 0: D(z,r) C Q}. The
following are equivalent:

@ Qs a B-domain.
@ sup,cq R(z) < +o0.

Examples. C\ (Z x Z) is a B-domain (R(z) < v/2/2).
Half-planes are not B-domains.
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BMOA

Let BMOA be the space of all holomorphic maps on D with bounded mean oscillation.
Equivalently, athose for which

zZ+w

2m
sup | sup / |fw(re®))?df | < 400, where f,(2) = f ( — ) — f(w), zeD.
webd \ r€[0,1) JO 1 +wz
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Equivalently, athose for which

Sup(sup /2”|fw<rei9>|2de><+oo, where fw<z>=f(”w)—f<w>, 2eD.
0

wed \ re(0,1) 1 +wz

Theorem (Hayman, Pommerenke — 1978)

Let Q2 be a planar domain. The following are equivalent:
@ Qis a BMOA-domain.
@ There exist R,C > 0 such that, for all z € 2, cap((C\ Q)N D(z,R)) > C.
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BMOA

Let BMOA be the space of all holomorphic maps on D with bounded mean oscillation.
Equivalently, athose for which

2 ) 24w
sup ( sup / |fw(rew)|2d0> < 400, where f,(2)=f ( ) — f(w), =zeD.
0

weD \ rg[0,1) 1 +wz

Theorem (Hayman, Pommerenke — 1978)

Let Q2 be a planar domain. The following are equivalent:
@ Qis a BMOA-domain.
@ There exist R,C > 0 such that, for all z € 2, cap((C\ Q)N D(z,R)) > C.

Recall that, given a set A C C, its logarithmic capacity is defined as

cop(4) =sup {exp ( [ [ 1og: ~ wl dute)auw) ) |

where p is any probability whose support is a compact set lying on A.
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A relation between Bloch and BMOA

It is known that BMOA C B, which yields that BMOA-domains are also B-domains.

8/28



A relation between Bloch and BMOA

It is known that BMOA C B, which yields that BMOA-domains are also B-domains.
However, Pommerenke (1977) proved that BMOA NU = BN U, where U is the family of all
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A relation between Bloch and BMOA

It is known that BMOA C B, which yields that BMOA-domains are also 3-domains.
However, Pommerenke (1977) proved that BMOA N/ = BN U, where U is the family of all
univalent functions on D.

Assume that € is simply connected. The following are equivalent:
@ Qis a BMOA-domain.

@ Qs a B-domain.
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Nevanlinna's class

Nevanlinna’s class N is the space of all holomorphic maps on ID with

sup / log* | F(ré)| dm (&) < +o0.
re(0,1) /oD
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Nevanlinna’s class N is the space of all holomorphic maps on ID with

sup [ 1og" |7(re)| dm(€) < +oc.
re(0,1) JoD

The following result for hyperbolic domains appears in Nevanlinna's book (1936):

@ Ifcap(C\ Q) =0, then fq possesses radial limits almost nowhere (in particular, fo ¢ N).

@ Ifcap(C\ Q) >0, then fo € N (in particular, it possesses radial limits almost
everywhere).
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Nevanlinna's class

Nevanlinna’s class N is the space of all holomorphic maps on ID with

sup [ 1og" |7(re)| dm(€) < +oc.
r€(0,1) J oD

The following result for hyperbolic domains appears in Nevanlinna's book (1936):

@ Ifcap(C\ Q) =0, then fq possesses radial limits almost nowhere (in particular, fo ¢ N).

@ Ifcap(C\ Q) >0, then fo € N (in particular, it possesses radial limits almost
everywhere).

Corollary (Nevanlinna; Frostman)

Let 2 be a planar domain. The following are equivalent:
@ Qis a N-domain.

@ The complement of 2 is not a polar set (i.e., its logarithmic capacity is positive).
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Smirnov's class

Smirnov's class NT is the subspace of N for which

im [ log* |f(re)| dm(€) = / log* [£(£)] dm(€).
D oD

r—=1= /g
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Smirnov's class

Smirnov's class N7 is the subspace of N for which

lim [ log" |f(ré)| dm(€) = /a tog" |F(9)] dm(e).

r—1= /oD

Theorem (Ahern, Cohn — 1983)

Let Q) be a planar domain. The following are equivalent:
@ Qisa Nt-domain.
@ Infinity is a regular point for 2.
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Smirnov's class

Smirnov's class N7 is the subspace of N for which

lim [ log" |f(ré)| dm(€) = /a tog" |F(9)] dm(e).

r—1= /oD

Theorem (Ahern, Cohn — 1983)

Let Q) be a planar domain. The following are equivalent:
@ Qisa Nt-domain.
@ Infinity is a regular point for 2.

For a planar domain €, a point £ € C, \ Q is said to be regular for € if:

@ Either £ ¢ 09,

@ or €99 anditis a regular point for Q w.r.t. the Dirichlet problem (see Wiener's
Criterion).

10/28



PART II

Recent contributions



The Hardy number

For p > 0, let the Hardy space HP be the family of all holomorphic maps on I such that

. /8 17OPdm(E) < +oc.

rel0,1)
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The Hardy number

For p > 0, let the Hardy space HP be the family of all holomorphic maps on ID such that

. /8 17OPdm(E) < +oc.

ref0,1)

Recall that H? D H? whenever 0 < p < g < +00. Therefore, in order to study HP-domains, we
recall the following notion:

Definition (first introduced by Hansen — 1970)
The Hardy number of a planar domain € is h(2) = sup({0} U {p > 0 : Hol(D, Q) C HP}).
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The Hardy number

For p > 0, let the Hardy space HP be the family of all holomorphic maps on ID such that

. / |F(rE)Pdm(€) < +oo.
) Job

rel0,1

Recall that H? D H? whenever 0 < p < g < +00. Therefore, in order to study HP-domains, we
recall the following notion:

Definition (first introduced by Hansen — 1970)
The Hardy number of a planar domain € is h(Q2) = sup({0} U {p > 0 : Hol(D, Q) C HP}).

Properties. (1) If Q; C Qg, then h(£2;) > h(Q2). (2) h(af2 + b) = h(Q) for a,b € C, a # 0.
Example. If Q is a half-plane, then h(£2) = 1. In other words: half-planes are HP-domains for
0 < p <1, and are not HP-domains for p > 1. Notice also that half-planes are not
H'-domains!

Note. Karafyllia (2020) constructed a HP-domain with Hardy number p (p = 37).
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Harmonic measure

Definition

Let © be a planar domain whose complement is non-polar. The harmonic measure w(z, B, )
of B C 0f) at a point z € € is the value at z of the solution of the generalized Dirichlet
problem in © with boundary values 1 on B and 0 on 02\ B.
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Harmonic measure

Definition

Let © be a planar domain whose complement is non-polar. The harmonic measure w(z, B, )
of B C 0f) at a point z € € is the value at z of the solution of the generalized Dirichlet
problem in © with boundary values 1 on B and 0 on 02\ B.

The map Q2 3 z — w(z, B,Q) is harmonic on
Q for every B C 99.

The map 9 D B — w(z, B, ) is a probability
measure for every z € €.

13/28



A description of the Hardy number of a domain

Theorem (Essén — 1981; Kim, Sugawa — 2011)
For a planar domain € with 0 € 2,

1 Fr, Q)
h(Q) = liminf (— 08w (0: Fr, R)).
R—+00 log R

Qg is the connected component of
QN {z € C:|z| < R} containing 0.

FRZaQRﬂ{Z€C2|Z|=R}
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Simply connected domains

For a hyperbolic domain ©, h(Q) = sup({0} U {p > 0: fq € HP}).
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Simply connected domains

For a hyperbolic domain ©, h(Q) = sup({0} U {p > 0: fq € HP}).

If @ # C is simply connected, then h(Q2) > 1/2.

Let 6 € (0,27]. f Q={z=re?:r>0,0<t<0}, 0¢€(0,2n], h(Q) = 7/0.

For every p € {0} U [1/2, +00] we know a planar domain whose Hardy number is p. What
about p € (0,1/2)7
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Filling the gap in (0,1/2)

Theorem (Contreras, C-Z, Kourou, Rodriguez-Piazza — 2024)

For every p € (0,1/2) there exists a domain 2 C C such that h(Q2) = p.
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Filling the gap in (0,1/2)

Theorem (Contreras, C-Z, Kourou, Rodriguez-Piazza — 2024)

For every p € (0,1/2) there exists a domain 2 C C such that h(Q2) = p.

Construction.

(2
NI
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Green function

Definition

Let © be a planar domain. A Green function for Q is a map go: Q x Q — (—o00, +00] such
that, for all w € €2, the following properties hold:

Q z+— ga(z,w) is harmonic on Q \ {w} and bounded outside every neighbourhood of w,
Q ga(w,w) = 4o00. Moreover, go(z,w) = —log|z —w|+ O(1) as z — w,

Q for nearly every £ € 99, ga(z,w) — 0 as z — &.
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If it exists, the Green function gq is unique. Indeed, it exists if and only if the complement of
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Green function

Definition
Let © be a planar domain. A Green function for Q is a map go: Q x Q — (—o00, +00] such

that, for all w € €2, the following properties hold:
Q z+— ga(z,w) is harmonic on Q \ {w} and bounded outside every neighbourhood of w,

Q ga(w,w) = 4o00. Moreover, go(z,w) = —log|z —w|+ O(1) as z — w,
Q for nearly every £ € 99, ga(z,w) — 0 as z — &.

If it exists, the Green function gq is unique. Indeed, it exists if and only if the complement of

) is non-polar.
Example.

17/28



Hardy number and Green function

Theorem (Betsakos, C-Z — 2024)

Let Q be a planar domain whose complement is non-polar. Assume that 0 € €. Consider

™

Uo(R) = / 900, R, R >0,

—T

where gq(0,z) :==0if 2 € Q.
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Hardy number and Green function

Theorem (Betsakos, C-Z — 2024)

Let Q be a planar domain whose complement is non-polar. Assume that 0 € €. Consider

™

Uo(R) = / 900, R, R >0,

—T

where gq (0, z) :== 0 if 2 € Q. Then,

h(Q) = liminf <_M) .

R—+00 log R
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Hardy number and hyperbolic distance

Theorem (Karafyllia — 2020)
Let ©2 # C be a simply connected planar domain. Assume that 0 € Q. Then,
.. . da(0, Fg)
h(Q) =1 f———
@)= oem)
where Fr = {2 € Q: |z| = R}.
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Domains with special geometric attributes - |

Let (2, )nez be an increasing sequence of real numbers with

no accumulation points, and let (y,),ecz be a sequence of
positive numbers. Then, the planar domain

Q=C\ (U{wn+iy: IyIZyn}>

nez

is called a comb domain.
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Let (2, )nez be an increasing sequence of real numbers with
no accumulation points, and let (y,),ecz be a sequence of
positive numbers. Then, the planar domain

Q=C\ (U{xn+iy: IyIZyn}>

nez

is called a comb domain.

Theorem (Karafyllia — 2022)

If Q is a comb domain, then h(€2) > 1. Moreover, for every p € [1,+00] there exists a comb
domain Q with h(Q2) = p.
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Domains with special geometric attributes - |

Let (2, )nez be an increasing sequence of real numbers with
no accumulation points, and let (y,),ecz be a sequence of
positive numbers. Then, the planar domain

nez

Q=C\ (U{:cnﬂy: IyIZyn}>

is called a comb domain.

Theorem (Karafyllia — 2022)

If Q is a comb domain, then h(€2) > 1. Moreover, for every p € [1,+00] there exists a comb
domain Q with h(Q2) = p.

Connection: Exit time of Brownian motion.
20/28



Domains with special geometric attributes - |l

A planar domain € is said to be spiral-like of order A = ¢%?,
—71/2 < ¢ < /2, if zeM € Q whenever t <0 and z € Q.
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Domains with special geometric attributes - Il

A planar domain € is said to be spiral-like of order \ = ¢,
—m/2 < ¢ < /2, if zeM € Q whenever t <0 and z € .
Spiral-like domains of order A = 1 are also called star-like.

Theorem (Hansen — 1971)

Let © be a spiral-like planar domain of order A = ¢’?. Consider A = limp_, o aq(R), where

aq(R) =sup{m(FE) : E is a subarc of {z € Q: |z| = R}} € [0,27]. Then,

™

h(Q) = 5

Moreover, if A > 0, then € is not a H2(2)_domain.
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A planar domain € is said to be spiral-like of order \ = ¢,
—m/2 < ¢ < /2, if zeM € Q whenever t <0 and z € .
Spiral-like domains of order A = 1 are also called star-like.

Theorem (Hansen — 1971)

Let 2 be a spiral-like planar domain of order A = €. Consider A = limpg_, o, aq(R), where
aq(R) =sup{m(E) : E is a subarc of {z € Q: |z| = R}} € [0,27]. Then,

™

h(Q) = 5

Moreover, if A > 0, then € is not a H2(2)_domain.

Connection: Koenigs maps for elliptic dynamics in D (Poggi-Corradini). 21 /28



Domains with special geometric attributes - |l

A planar domain €2 is said to be a Koenigs domain if Q@ +1 C Q.
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Domains with special geometric attributes - |l

A planar domain €2 is said to be a Koenigs domain if Q +1 C .

Theorem (Contreras, C-Z, Kourou, Rodriguez-Piazza — 2024)

If © is a Koenigs domain, then h(€2) € {0} U [1/2, +o0]. Moreover, h(€2) > 1/2 if and only if
the complement of €2 is non-polar.
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Domains with special geometric attributes - |l

A planar domain €2 is said to be a Koenigs domain if Q +1 C .

Theorem (Contreras, C-Z, Kourou, Rodriguez-Piazza — 2024)

If © is a Koenigs domain, then h(€2) € {0} U [1/2, +o0]. Moreover, h(€2) > 1/2 if and only if
the complement of €2 is non-polar.

Connection: Koenigs maps for non-elliptic dynamics in .
22/28



Strict inclusions

Recall that
U HP c NT C N.
p>0
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Strict inclusions

Recall that
|JHP c Nt CN.
p>0
However, such inclusions are strict (even using universal covering maps!).

fon €N, fo, ¢ N* fay €NV, fo, ¢ HP
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The Bergman number

For p > 0, let AP be the Bergman space. That is, the collection of all holomorphic maps on D
with

/ F(2)P dA(2) < +oo.
D
For a planar domain ), it is possible to consider its 0-Bergman number as

bg :=sup({0} U {p > 0 : Hol(D, Q) C AP}).
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The Bergman number

For p>0and a > —1, let A” be the Bergman space. That is, the collection of all
holomorphic maps on D with

/ £ (1 — [2])*dA(z) < +oo.
For a planar domain €2, it is possible to consider its «-Bergman number as
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The Bergman number

For p >0 and o > —1, let A?, be the Bergman space. That is, the collection of all
holomorphic maps on D with

| 1r@F (= )rdag) < +e.
For a planar domain (), it is possible to consider its a-Bergman number as
b, :=sup({0} U {p > 0: Hol(D, Q) C AP}).

Karafyllia (2023), after a collaboration with Karamanlis, introduced the Bergman number of

b(Q) := inf({b(f) : f € Hol(D, Q)}),

where

b(f) = sup ({0}u{ P Sa> —1,p>o,feAg}) € [0, +00).

(07
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Relations among such numbers

Recall that H? C AZ for p > q/(a + 2). This means that

o

a(92
a—+2

~—

h(Q) < < b(Q).
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Indeed, the following result holds.

Theorem (Karafyllia, Karamanlis — 2023)

If 2 is a simply connected planar domain, then
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If 2 is a simply connected planar domain, then
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Also: New formulas for the Hardy/Bergman number of a domain.
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Relations among such numbers

Recall that H? C AZ for p > q/(a + 2). This means that

o

a(92
o+ 2

~—

h(Q) < < b(Q).

Indeed, the following result holds.

Theorem (Karafyllia, Karamanlis — 2023)

If 2 is a simply connected planar domain, then

T a+2 = b(®).

Also: New formulas for the Hardy/Bergman number of a domain.
Remark: Such equalities may not hold in the general case: Q = C\ (Z x Z).

25 /28



Strict inequalities

Theorem (Betsakos, C-Z — 2025)

@ For every p € [0,+00) there exists a planar domain 2 with
p =h(2) < b(Q) = be(NN) = +o0.
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@ There exists a planar domain €2 which is regular for the Dirichlet problem but
1/2 =h(2) < b(2) = be () = 0.
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Strict inequalities

Theorem (Betsakos, C-Z — 2025)

@ For every p € [0,+00) there exists a planar domain 2 with
p =h(2) < b(Q) = be(NN) = +o0.

@ There exists a planar domain €2 which is regular for the Dirichlet problem but
1/2 =h(2) < b(2) = be () = 0.
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Equalities in non-simply connected cases

Theorem (Betsakos, C-Z — 2025)

Assume that the planar domain €2 has the following properties:

@ Qs unbounded.

@ Let F be the union of all bounded components of C, \ 2. The set F' is bounded.

@ Consider the simply connected domain ' = Q U F. For all sufficiently large » > 0, the
set ' N{z € C: |z| = r} has exactly one component.
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Equalities in non-simply connected cases

Theorem (Betsakos, C-Z — 2025)

Assume that the planar domain €2 has the following properties:
@  is unbounded.

@ Let F be the union of all bounded components of C, \ 2. The set F' is bounded.

@ Consider the simply connected domain ' = Q U F. For all sufficiently large » > 0, the
set ' N{z € C: |z| = r} has exactly one component.

Then,
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