Holomorphic function spaces and the geometry of image domains

Francisco José Cruz Zamorano Universidad de Sevilla (Spain)

This research has been funded by the PID2022-136320NB-I00 project: AEI/10.13039/501100011033, FEDER, UE

Statement of the problem

Let

- \blacktriangleright X be a holomorphic function space on the unit disk \mathbb{D} ,
- $\triangleright \Omega$ be a planar domain (i.e., a connected and open subset of \mathbb{C}).

Statement of the problem

Let

- \blacktriangleright X be a holomorphic function space on the unit disk \mathbb{D} ,
- Ω be a planar domain (i.e., a connected and open subset of \mathbb{C}).

Problem: Decide whether $Hol(\mathbb{D}, \Omega) := \{Holomorphic maps f : \mathbb{D} \to \Omega\} \subset X$ or not.

Statement of the problem

Let

- \blacktriangleright X be a holomorphic function space on the unit disk \mathbb{D} ,
- Ω be a planar domain (i.e., a connected and open subset of \mathbb{C}).

Problem: Decide whether $Hol(\mathbb{D}, \Omega) := \{Holomorphic maps f : \mathbb{D} \to \Omega\} \subset X$ or not.

Definition

 Ω is said to be an *X*-domain if $\operatorname{Hol}(\mathbb{D}, \Omega) \subset X$.

Statement of the problem

Let

- \blacktriangleright X be a holomorphic function space on the unit disk \mathbb{D} ,
- Ω be a planar domain (i.e., a connected and open subset of \mathbb{C}).

Problem: Decide whether $Hol(\mathbb{D}, \Omega) := \{Holomorphic maps f : \mathbb{D} \to \Omega\} \subset X$ or not.

Definition

 Ω is said to be an *X*-domain if $\operatorname{Hol}(\mathbb{D}, \Omega) \subset X$.

Example. Let H^{∞} be the Hardy space of all bounded holomorphic maps on \mathbb{D} . It is easy to see that Ω is a H^{∞} -domain if and only if it is bounded.

Statement of the problem

Let

- \blacktriangleright X be a holomorphic function space on the unit disk \mathbb{D} ,
- Ω be a planar domain (i.e., a connected and open subset of \mathbb{C}).

Problem: Decide whether $\operatorname{Hol}(\mathbb{D}, \Omega) := \{ \operatorname{Holomorphic maps} f : \mathbb{D} \to \Omega \} \subset X \text{ or not.}$

Definition

 Ω is said to be an *X*-domain if $\operatorname{Hol}(\mathbb{D}, \Omega) \subset X$.

Example. Let H^{∞} be the Hardy space of all bounded holomorphic maps on \mathbb{D} . It is easy to see that Ω is a H^{∞} -domain if and only if it is bounded.

Today: $X = \text{Bloch } \mathcal{B}$, BMOA, Nevanlinna N, Smirnov N⁺, Hardy H^p, Bergman A^p_{\alpha}.

The problem might not be interesting for all holomorphic functions spaces X.

The problem might not be interesting for all holomorphic functions spaces X.

Let \mathcal{D} be the Dirichlet space. That is, the space of all holomorphic maps $f:\mathbb{D}\to\mathbb{C}$ such that

$$\int_{\mathbb{D}} \left| f'(z) \right|^2 dA(z) < +\infty.$$

For every $z \in \mathbb{C}$ and every R > 0 there exists a map $f \colon \mathbb{D} \to D(z, R)$ such that $f \notin \mathcal{D}$.

The problem might not be interesting for all holomorphic functions spaces X.

Let \mathcal{D} be the Dirichlet space. That is, the space of all holomorphic maps $f: \mathbb{D} \to \mathbb{C}$ such that

$$\int_{\mathbb{D}} \left| f'(z) \right|^2 dA(z) < +\infty.$$

For every $z \in \mathbb{C}$ and every R > 0 there exists a map $f \colon \mathbb{D} \to D(z, R)$ such that $f \notin \mathcal{D}$. Consequence: There are no \mathcal{D} -domains.

Definition

We say that X enjoys the subordination property if $f \circ \varphi \in X$ whenever $f \in X$ and $\varphi \colon \mathbb{D} \to \mathbb{D}$ is holomorphic.

Reformulation

Definition

We say that X enjoys the subordination property if $f \circ \varphi \in X$ whenever $f \in X$ and $\varphi \colon \mathbb{D} \to \mathbb{D}$ is holomorphic.

Some classical spaces X enjoy this property. For instance, they do if composition operators are bounded on X.

Reformulation

Definition

We say that X enjoys the subordination property if $f \circ \varphi \in X$ whenever $f \in X$ and $\varphi \colon \mathbb{D} \to \mathbb{D}$ is holomorphic.

Some classical spaces X enjoy this property. For instance, they do if composition operators are bounded on X.

Lemma

Assume that X enjoys the subordination property and that Ω is hyperbolic (i.e., its complement possesses at least two points). Then, the following are equivalent:

- \bigcirc Ω is an X-domain.
- Some (hence, all) universal covering map $f_{\Omega} \colon \mathbb{D} \to \Omega$ belongs to X.

Reformulation

Definition

We say that X enjoys the subordination property if $f \circ \varphi \in X$ whenever $f \in X$ and $\varphi \colon \mathbb{D} \to \mathbb{D}$ is holomorphic.

Some classical spaces X enjoy this property. For instance, they do if composition operators are bounded on X.

Lemma

Assume that X enjoys the subordination property and that Ω is hyperbolic (i.e., its complement possesses at least two points). Then, the following are equivalent:

- Ω is an X-domain.
- Some (hence, all) universal covering map $f_{\Omega} \colon \mathbb{D} \to \Omega$ belongs to X.

Recall that, for a hyperbolic domain Ω , a universal covering map $f_{\Omega} \colon \mathbb{D} \to \Omega$ is a holomorphic map with the following property: For every $f \in \operatorname{Hol}(\mathbb{D}, \Omega)$ there exists $\varphi \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ such that $f = f_{\Omega} \circ \varphi$.

 \mathbb{D}

PART I

Classical answers for classical spaces

Let ${\mathcal B}$ be the Bloch space. That is, the space of all holomorphic maps on ${\mathbb D}$ for which

$$\sup_{z\in\mathbb{D}}(1-|z|^2)\left|f'(z)\right|<+\infty.$$

Bloch

Let ${\mathcal B}$ be the Bloch space. That is, the space of all holomorphic maps on ${\mathbb D}$ for which

$$\sup_{z\in\mathbb{D}}(1-|z|^2)\left|f'(z)\right|<+\infty.$$

Theorem (Seidel, Walsh – 1942)

Let Ω be a planar domain. For $z \in \Omega$, consider $R(z) = \sup\{r > 0 : D(z, r) \subset \Omega\}$. The following are equivalent:

- $\ \, \bigcirc \ \ \, \Omega \ \ \, \text{is a \mathcal{B}-domain.}$

Bloch

Let ${\mathcal B}$ be the Bloch space. That is, the space of all holomorphic maps on ${\mathbb D}$ for which

$$\sup_{z\in\mathbb{D}}(1-|z|^2)\left|f'(z)\right|<+\infty.$$

Theorem (Seidel, Walsh – 1942)

Let Ω be a planar domain. For $z \in \Omega$, consider $R(z) = \sup\{r > 0 : D(z, r) \subset \Omega\}$. The following are equivalent:

- $\ \, \bigcirc \ \ \, \Omega \ \ \, \text{is a \mathcal{B}-domain.}$
- $o \quad \sup_{z \in \Omega} R(z) < +\infty.$

Examples. $\mathbb{C} \setminus (\mathbb{Z} \times \mathbb{Z})$ is a \mathcal{B} -domain $(R(z) \le \sqrt{2}/2)$. Half-planes are not \mathcal{B} -domains.

BMOA

Let ${\rm BMOA}$ be the space of all holomorphic maps on $\mathbb D$ with bounded mean oscillation. Equivalently, athose for which

$$\sup_{w\in\mathbb{D}}\left(\sup_{r\in[0,1)}\int_0^{2\pi}|f_w(re^{i\theta})|^2d\theta\right)<+\infty,\quad\text{where}\quad f_w(z)=f\left(\frac{z+w}{1+\overline{w}z}\right)-f(w),\quad z\in\mathbb{D}.$$

BMOA

Let ${\rm BMOA}$ be the space of all holomorphic maps on $\mathbb D$ with bounded mean oscillation. Equivalently, athose for which

$$\sup_{w\in\mathbb{D}}\left(\sup_{r\in[0,1)}\int_{0}^{2\pi}|f_w(re^{i\theta})|^2d\theta\right)<+\infty,\quad\text{where}\quad f_w(z)=f\left(\frac{z+w}{1+\overline{w}z}\right)-f(w),\quad z\in\mathbb{D}.$$

Theorem (Hayman, Pommerenke – 1978)

Let Ω be a planar domain. The following are equivalent:

- Ω is a BMOA-domain.
- There exist R, C > 0 such that, for all $z \in \Omega$, $cap((\mathbb{C} \setminus \Omega) \cap D(z, R)) \ge C$.

BMOA

Let ${\rm BMOA}$ be the space of all holomorphic maps on $\mathbb D$ with bounded mean oscillation. Equivalently, athose for which

$$\sup_{w\in\mathbb{D}}\left(\sup_{r\in[0,1)}\int_{0}^{2\pi}|f_w(re^{i\theta})|^2d\theta\right)<+\infty,\quad\text{where}\quad f_w(z)=f\left(\frac{z+w}{1+\overline{w}z}\right)-f(w),\quad z\in\mathbb{D}.$$

Theorem (Hayman, Pommerenke – 1978)

Let Ω be a planar domain. The following are equivalent:

- Ω is a BMOA-domain.
- There exist R, C > 0 such that, for all $z \in \Omega$, $cap((\mathbb{C} \setminus \Omega) \cap D(z, R)) \ge C$.

Recall that, given a set $A \subset \mathbb{C}$, its logarithmic capacity is defined as

$$\operatorname{cap}(A) = \sup_{\mu} \left\{ \exp\left(\iint \log |z - w| \, d\mu(z) d\mu(w) \right) \right\},\,$$

where μ is any probability whose support is a compact set lying on A.

It is known that ${\rm BMOA}\subset \mathcal{B},$ which yields that ${\rm BMOA}\text{-domains}$ are also $\mathcal{B}\text{-domains}.$

It is known that BMOA $\subset \mathcal{B}$, which yields that BMOA-domains are also \mathcal{B} -domains. However, Pommerenke (1977) proved that BMOA $\cap \mathcal{U} = \mathcal{B} \cap \mathcal{U}$, where \mathcal{U} is the family of all univalent functions on \mathbb{D} . It is known that BMOA $\subset \mathcal{B}$, which yields that BMOA-domains are also \mathcal{B} -domains. However, Pommerenke (1977) proved that BMOA $\cap \mathcal{U} = \mathcal{B} \cap \mathcal{U}$, where \mathcal{U} is the family of all univalent functions on \mathbb{D} .

Corollary

Assume that $\boldsymbol{\Omega}$ is simply connected. The following are equivalent:

- $\bigcirc \ \Omega \text{ is a BMOA-domain.}$
- Ω is a \mathcal{B} -domain.

Nevanlinna's class

Nevanlinna's class N is the space of all holomorphic maps on $\mathbb D$ with

$$\sup_{r \in (0,1)} \int_{\partial \mathbb{D}} \log^+ |f(r\xi)| \, dm(\xi) < +\infty.$$

Nevanlinna's class ${\rm N}$ is the space of all holomorphic maps on ${\mathbb D}$ with

$$\sup_{r \in (0,1)} \int_{\partial \mathbb{D}} \log^+ |f(r\xi)| \, dm(\xi) < +\infty.$$

The following result for hyperbolic domains appears in Nevanlinna's book (1936):

- If $cap(\mathbb{C} \setminus \Omega) = 0$, then f_{Ω} possesses radial limits almost nowhere (in particular, $f_{\Omega} \notin N$).
- If $cap(\mathbb{C} \setminus \Omega) > 0$, then $f_{\Omega} \in \mathbb{N}$ (in particular, it possesses radial limits almost everywhere).

Nevanlinna's class ${\rm N}$ is the space of all holomorphic maps on ${\mathbb D}$ with

$$\sup_{r \in (0,1)} \int_{\partial \mathbb{D}} \log^+ |f(r\xi)| \, dm(\xi) < +\infty.$$

The following result for hyperbolic domains appears in Nevanlinna's book (1936):

- If $cap(\mathbb{C} \setminus \Omega) = 0$, then f_{Ω} possesses radial limits almost nowhere (in particular, $f_{\Omega} \notin N$).
- If $cap(\mathbb{C} \setminus \Omega) > 0$, then $f_{\Omega} \in \mathbb{N}$ (in particular, it possesses radial limits almost everywhere).

Corollary (Nevanlinna; Frostman)

Let Ω be a planar domain. The following are equivalent:

- \bigcirc Ω is a N-domain.
- The complement of Ω is not a polar set (i.e., its logarithmic capacity is positive).

Smirnov's class

Smirnov's class N^+ is the subspace of N for which

$$\lim_{r \to 1^-} \int_{\partial \mathbb{D}} \log^+ |f(r\xi)| \, dm(\xi) = \int_{\partial \mathbb{D}} \log^+ |f(\xi)| \, dm(\xi).$$

Smirnov's class

Smirnov's class N^+ is the subspace of N for which

$$\lim_{r \to 1^-} \int_{\partial \mathbb{D}} \log^+ |f(r\xi)| \, dm(\xi) = \int_{\partial \mathbb{D}} \log^+ |f(\xi)| \, dm(\xi).$$

Theorem (Ahern, Cohn – 1983)

Let Ω be a planar domain. The following are equivalent:

- Ω is a N⁺-domain.
- Infinity is a regular point for Ω .

Smirnov's class

Smirnov's class N^+ is the subspace of N for which

$$\lim_{r \to 1^-} \int_{\partial \mathbb{D}} \log^+ |f(r\xi)| \, dm(\xi) = \int_{\partial \mathbb{D}} \log^+ |f(\xi)| \, dm(\xi).$$

Theorem (Ahern, Cohn – 1983)

Let Ω be a planar domain. The following are equivalent:

- Ω is a N⁺-domain.
- Infinity is a regular point for Ω .

For a planar domain Ω , a point $\xi \in \mathbb{C}_{\infty} \setminus \Omega$ is said to be regular for Ω if:

- Either $\xi \notin \partial \Omega$,
- or $\xi \in \partial \Omega$ and it is a regular point for Ω w.r.t. the Dirichlet problem (see Wiener's Criterion).

PART II

Recent contributions

For p>0, let the Hardy space H^p be the family of all holomorphic maps on $\mathbb D$ such that

$$\sup_{r\in[0,1)}\int_{\partial\mathbb{D}}|f(r\xi)|^pdm(\xi)<+\infty.$$

For p>0, let the Hardy space H^p be the family of all holomorphic maps on $\mathbb D$ such that

$$\sup_{r\in[0,1)}\int_{\partial\mathbb{D}}|f(r\xi)|^pdm(\xi)<+\infty.$$

Recall that $\mathrm{H}^p \supset \mathrm{H}^q$ whenever 0 .

For p>0, let the Hardy space H^p be the family of all holomorphic maps on $\mathbb D$ such that

$$\sup_{r \in [0,1)} \int_{\partial \mathbb{D}} |f(r\xi)|^p dm(\xi) < +\infty.$$

Recall that $H^p \supset H^q$ whenever $0 . Therefore, in order to study <math>H^p$ -domains, we recall the following notion:

Definition (first introduced by Hansen – 1970)

The Hardy number of a planar domain Ω is $h(\Omega) = \sup(\{0\} \cup \{p > 0 : Hol(\mathbb{D}, \Omega) \subset H^p\}).$

For p>0, let the Hardy space H^p be the family of all holomorphic maps on $\mathbb D$ such that

$$\sup_{r \in [0,1)} \int_{\partial \mathbb{D}} |f(r\xi)|^p dm(\xi) < +\infty.$$

Recall that $H^p \supset H^q$ whenever $0 . Therefore, in order to study <math>H^p$ -domains, we recall the following notion:

Definition (first introduced by Hansen – 1970)

The Hardy number of a planar domain Ω is $h(\Omega) = \sup(\{0\} \cup \{p > 0 : Hol(\mathbb{D}, \Omega) \subset H^p\}).$

Properties. (1) If $\Omega_1 \subset \Omega_2$, then $h(\Omega_1) \ge h(\Omega_2)$. (2) $h(a\Omega + b) = h(\Omega)$ for $a, b \in \mathbb{C}$, $a \neq 0$.

For p>0, let the Hardy space H^p be the family of all holomorphic maps on $\mathbb D$ such that

$$\sup_{r \in [0,1)} \int_{\partial \mathbb{D}} |f(r\xi)|^p dm(\xi) < +\infty.$$

Recall that $H^p \supset H^q$ whenever $0 . Therefore, in order to study <math>H^p$ -domains, we recall the following notion:

Definition (first introduced by Hansen – 1970)

The Hardy number of a planar domain Ω is $h(\Omega) = \sup(\{0\} \cup \{p > 0 : Hol(\mathbb{D}, \Omega) \subset H^p\}).$

Properties. (1) If $\Omega_1 \subset \Omega_2$, then $h(\Omega_1) \ge h(\Omega_2)$. (2) $h(a\Omega + b) = h(\Omega)$ for $a, b \in \mathbb{C}$, $a \ne 0$. **Example.** If Ω is a half-plane, then $h(\Omega) = 1$.

For p>0, let the Hardy space H^p be the family of all holomorphic maps on $\mathbb D$ such that

$$\sup_{r \in [0,1)} \int_{\partial \mathbb{D}} |f(r\xi)|^p dm(\xi) < +\infty.$$

Recall that $H^p \supset H^q$ whenever $0 . Therefore, in order to study <math>H^p$ -domains, we recall the following notion:

Definition (first introduced by Hansen – 1970)

The Hardy number of a planar domain Ω is $h(\Omega) = \sup(\{0\} \cup \{p > 0 : Hol(\mathbb{D}, \Omega) \subset H^p\}).$

Properties. (1) If $\Omega_1 \subset \Omega_2$, then $h(\Omega_1) \ge h(\Omega_2)$. (2) $h(a\Omega + b) = h(\Omega)$ for $a, b \in \mathbb{C}$, $a \ne 0$. **Example.** If Ω is a half-plane, then $h(\Omega) = 1$. In other words: half-planes are H^p -domains for $0 , and are not <math>H^p$ -domains for p > 1.
The Hardy number

For p>0, let the Hardy space H^p be the family of all holomorphic maps on $\mathbb D$ such that

$$\sup_{r \in [0,1)} \int_{\partial \mathbb{D}} |f(r\xi)|^p dm(\xi) < +\infty.$$

Recall that $H^p \supset H^q$ whenever $0 . Therefore, in order to study <math>H^p$ -domains, we recall the following notion:

Definition (first introduced by Hansen – 1970)

The Hardy number of a planar domain Ω is $h(\Omega) = \sup(\{0\} \cup \{p > 0 : Hol(\mathbb{D}, \Omega) \subset H^p\}).$

Properties. (1) If $\Omega_1 \subset \Omega_2$, then $h(\Omega_1) \ge h(\Omega_2)$. (2) $h(a\Omega + b) = h(\Omega)$ for $a, b \in \mathbb{C}$, $a \ne 0$. **Example.** If Ω is a half-plane, then $h(\Omega) = 1$. In other words: half-planes are H^p -domains for $0 , and are not <math>H^p$ -domains for p > 1. Notice also that half-planes are not H^1 -domains!

The Hardy number

For p>0, let the Hardy space H^p be the family of all holomorphic maps on $\mathbb D$ such that

$$\sup_{r \in [0,1)} \int_{\partial \mathbb{D}} |f(r\xi)|^p dm(\xi) < +\infty.$$

Recall that $H^p \supset H^q$ whenever $0 . Therefore, in order to study <math>H^p$ -domains, we recall the following notion:

Definition (first introduced by Hansen – 1970)

The Hardy number of a planar domain Ω is $h(\Omega) = \sup(\{0\} \cup \{p > 0 : Hol(\mathbb{D}, \Omega) \subset H^p\}).$

Properties. (1) If $\Omega_1 \subset \Omega_2$, then $h(\Omega_1) \ge h(\Omega_2)$. (2) $h(a\Omega + b) = h(\Omega)$ for $a, b \in \mathbb{C}$, $a \ne 0$. **Example.** If Ω is a half-plane, then $h(\Omega) = 1$. In other words: half-planes are H^p -domains for $0 , and are not <math>H^p$ -domains for p > 1. Notice also that half-planes are not H^1 -domains!

Note. Karafyllia (2020) constructed a H^p-domain with Hardy number p ($p = 3\pi$).

Let Ω be a planar domain whose complement is non-polar. The harmonic measure $\omega(z, B, \Omega)$ of $B \subset \partial \Omega$ at a point $z \in \Omega$ is the value at z of the solution of the generalized Dirichlet problem in Ω with boundary values 1 on B and 0 on $\partial \Omega \setminus B$.

Let Ω be a planar domain whose complement is non-polar. The harmonic measure $\omega(z, B, \Omega)$ of $B \subset \partial \Omega$ at a point $z \in \Omega$ is the value at z of the solution of the generalized Dirichlet problem in Ω with boundary values 1 on B and 0 on $\partial \Omega \setminus B$.

Let Ω be a planar domain whose complement is non-polar. The harmonic measure $\omega(z, B, \Omega)$ of $B \subset \partial \Omega$ at a point $z \in \Omega$ is the value at z of the solution of the generalized Dirichlet problem in Ω with boundary values 1 on B and 0 on $\partial \Omega \setminus B$.

Let Ω be a planar domain whose complement is non-polar. The harmonic measure $\omega(z, B, \Omega)$ of $B \subset \partial \Omega$ at a point $z \in \Omega$ is the value at z of the solution of the generalized Dirichlet problem in Ω with boundary values 1 on B and 0 on $\partial \Omega \setminus B$.

The map $\Omega \ni z \mapsto \omega(z, B, \Omega)$ is harmonic on Ω for every $B \subset \partial \Omega$.

The map $\partial \Omega \supset B \mapsto \omega(z, B, \Omega)$ is a probability measure for every $z \in \Omega$.

A description of the Hardy number of a domain

Theorem (Essén – 1981; Kim, Sugawa – 2011)

For a planar domain Ω with $0 \in \Omega$,

$$h(\Omega) = \liminf_{R \to +\infty} \left(-\frac{\log \omega(0, F_R, \Omega_R)}{\log R} \right).$$

 Ω_R is the connected component of $\Omega \cap \{z \in \mathbb{C} : |z| < R\}$ containing 0.

$$F_R = \partial \Omega_R \cap \{ z \in \mathbb{C} : |z| = R \}$$

For a hyperbolic domain Ω , $h(\Omega) = \sup(\{0\} \cup \{p > 0 : f_{\Omega} \in H^p\})$.

For a hyperbolic domain Ω , $h(\Omega) = \sup(\{0\} \cup \{p > 0 : f_{\Omega} \in H^p\})$.

Corollary

If $\Omega \neq \mathbb{C}$ is simply connected, then $h(\Omega) \geq 1/2$.

For a hyperbolic domain Ω , $h(\Omega) = \sup(\{0\} \cup \{p > 0 : f_{\Omega} \in H^p\})$.

Corollary

If $\Omega \neq \mathbb{C}$ is simply connected, then $h(\Omega) \geq 1/2$.

Let $\theta \in (0, 2\pi]$. If $\Omega = \{z = re^{it} : r > 0, 0 < t < \theta\}$, $\theta \in (0, 2\pi]$, $h(\Omega) = \pi/\theta$.

For a hyperbolic domain Ω , $h(\Omega) = \sup(\{0\} \cup \{p > 0 : f_{\Omega} \in H^{p}\}).$

Corollary

If $\Omega \neq \mathbb{C}$ is simply connected, then $h(\Omega) \geq 1/2$.

Let
$$\theta \in (0, 2\pi]$$
. If $\Omega = \{z = re^{it} : r > 0, 0 < t < \theta\}$, $\theta \in (0, 2\pi]$, $h(\Omega) = \pi/\theta$.

Question

For every $p \in \{0\} \cup [1/2, +\infty]$ we know a planar domain whose Hardy number is p. What about $p \in (0, 1/2)$?

Filling the gap in (0, 1/2)

Theorem (Contreras, C-Z, Kourou, Rodríguez-Piazza – 2024)

For every $p \in (0, 1/2)$ there exists a domain $\Omega \subset \mathbb{C}$ such that $h(\Omega) = p$.

Filling the gap in (0, 1/2)

Theorem (Contreras, C-Z, Kourou, Rodríguez-Piazza – 2024)

For every $p \in (0, 1/2)$ there exists a domain $\Omega \subset \mathbb{C}$ such that $h(\Omega) = p$.

Construction.

Let Ω be a planar domain. A Green function for Ω is a map $g_{\Omega} \colon \Omega \times \Omega \to (-\infty, +\infty]$ such that, for all $w \in \Omega$, the following properties hold:

- **Q** $z \mapsto g_{\Omega}(z, w)$ is harmonic on $\Omega \setminus \{w\}$ and bounded outside every neighbourhood of w,
- 2 $g_{\Omega}(w,w) = +\infty$. Moreover, $g_{\Omega}(z,w) = -\log|z-w| + O(1)$ as $z \to w$,
- $\textbf{ o for nearly every } \xi \in \partial \Omega, \ g_{\Omega}(z,w) \to 0 \text{ as } z \to \xi.$

Let Ω be a planar domain. A Green function for Ω is a map $g_{\Omega} \colon \Omega \times \Omega \to (-\infty, +\infty]$ such that, for all $w \in \Omega$, the following properties hold:

- **Q** $z \mapsto g_{\Omega}(z, w)$ is harmonic on $\Omega \setminus \{w\}$ and bounded outside every neighbourhood of w,
- 2 $g_{\Omega}(w,w) = +\infty$. Moreover, $g_{\Omega}(z,w) = -\log|z-w| + O(1)$ as $z \to w$,
- (a) for nearly every $\xi \in \partial \Omega$, $g_{\Omega}(z, w) \to 0$ as $z \to \xi$.

If it exists, the Green function g_{Ω} is unique. Indeed, it exists if and only if the complement of Ω is non-polar.

Let Ω be a planar domain. A Green function for Ω is a map $g_{\Omega} \colon \Omega \times \Omega \to (-\infty, +\infty]$ such that, for all $w \in \Omega$, the following properties hold:

- **Q** $z \mapsto g_{\Omega}(z, w)$ is harmonic on $\Omega \setminus \{w\}$ and bounded outside every neighbourhood of w,
- 2 $g_{\Omega}(w,w) = +\infty$. Moreover, $g_{\Omega}(z,w) = -\log|z-w| + O(1)$ as $z \to w$,
- (a) for nearly every $\xi \in \partial \Omega$, $g_{\Omega}(z, w) \to 0$ as $z \to \xi$.

If it exists, the Green function g_{Ω} is unique. Indeed, it exists if and only if the complement of Ω is non-polar.

Example.

$$g_{\mathbb{D}}(z,w) = \log \left| \frac{1 - z\overline{w}}{z - w} \right|, \qquad z, w \in \mathbb{D}.$$

Theorem (Betsakos, C-Z – 2024)

Let Ω be a planar domain whose complement is non-polar. Assume that $0 \in \Omega$. Consider

$$\Psi_{\Omega}(R) = \int_{-\pi}^{\pi} g_{\Omega}(0, Re^{i\theta}) d\theta, \qquad R > 0,$$

where $g_{\Omega}(0,z) := 0$ if $z \notin \Omega$.

Theorem (Betsakos, C-Z – 2024)

Let Ω be a planar domain whose complement is non-polar. Assume that $0 \in \Omega$. Consider

$$\Psi_{\Omega}(R) = \int_{-\pi}^{\pi} g_{\Omega}(0, Re^{i\theta}) d\theta, \qquad R > 0,$$

where $g_{\Omega}(0,z) := 0$ if $z \notin \Omega$. Then,

$$h(\Omega) = \liminf_{R \to +\infty} \left(-\frac{\log(\Psi_{\Omega}(R))}{\log R} \right).$$

Theorem (Karafyllia – 2020)

Let $\Omega \neq \mathbb{C}$ be a simply connected planar domain. Assume that $0 \in \Omega$. Then,

$$\mathbf{h}(\Omega) = \liminf_{R \to +\infty} \frac{d_{\Omega}(0, F_R)}{\log(R)},$$

where $F_R = \{ z \in \Omega : |z| = R \}.$

Domains with special geometric attributes - I

Let $(x_n)_{n\in\mathbb{Z}}$ be an increasing sequence of real numbers with no accumulation points, and let $(y_n)_{n\in\mathbb{Z}}$ be a sequence of positive numbers. Then, the planar domain

$$\Omega = \mathbb{C} \setminus \left(\bigcup_{n \in \mathbb{Z}} \{ x_n + iy : |y| \ge y_n \} \right)$$

is called a comb domain.

Domains with special geometric attributes - I

Let $(x_n)_{n\in\mathbb{Z}}$ be an increasing sequence of real numbers with no accumulation points, and let $(y_n)_{n\in\mathbb{Z}}$ be a sequence of positive numbers. Then, the planar domain

$$\Omega = \mathbb{C} \setminus \left(\bigcup_{n \in \mathbb{Z}} \{ x_n + iy : |y| \ge y_n \} \right)$$

is called a comb domain.

Theorem (Karafyllia – 2022)

If Ω is a comb domain, then $h(\Omega) \ge 1$. Moreover, for every $p \in [1, +\infty]$ there exists a comb domain Ω with $h(\Omega) = p$.

Domains with special geometric attributes - I

Let $(x_n)_{n\in\mathbb{Z}}$ be an increasing sequence of real numbers with no accumulation points, and let $(y_n)_{n\in\mathbb{Z}}$ be a sequence of positive numbers. Then, the planar domain

$$\Omega = \mathbb{C} \setminus \left(\bigcup_{n \in \mathbb{Z}} \{ x_n + iy : |y| \ge y_n \} \right)$$

is called a comb domain.

Theorem (Karafyllia – 2022)

If Ω is a comb domain, then $h(\Omega) \ge 1$. Moreover, for every $p \in [1, +\infty]$ there exists a comb domain Ω with $h(\Omega) = p$.

Connection: Exit time of Brownian motion.

A planar domain Ω is said to be spiral-like of order $\lambda = e^{i\phi}$, $-\pi/2 < \phi < \pi/2$, if $ze^{\lambda t} \in \Omega$ whenever $t \leq 0$ and $z \in \Omega$.

A planar domain Ω is said to be spiral-like of order $\lambda = e^{i\phi}$, $-\pi/2 < \phi < \pi/2$, if $ze^{\lambda t} \in \Omega$ whenever $t \leq 0$ and $z \in \Omega$.

A planar domain Ω is said to be spiral-like of order $\lambda = e^{i\phi}$, $-\pi/2 < \phi < \pi/2$, if $ze^{\lambda t} \in \Omega$ whenever $t \leq 0$ and $z \in \Omega$. Spiral-like domains of order $\lambda = 1$ are also called star-like.

A planar domain Ω is said to be spiral-like of order $\lambda = e^{i\phi}$, $-\pi/2 < \phi < \pi/2$, if $ze^{\lambda t} \in \Omega$ whenever $t \leq 0$ and $z \in \Omega$. Spiral-like domains of order $\lambda = 1$ are also called star-like.

Domains with special geometric attributes - II

A planar domain Ω is said to be spiral-like of order $\lambda = e^{i\phi}$, $-\pi/2 < \phi < \pi/2$, if $ze^{\lambda t} \in \Omega$ whenever $t \leq 0$ and $z \in \Omega$. Spiral-like domains of order $\lambda = 1$ are also called star-like.

Theorem (Hansen – 1971)

Let Ω be a spiral-like planar domain of order $\lambda = e^{i\phi}$. Consider $A = \lim_{R \to +\infty} \alpha_{\Omega}(R)$, where $\alpha_{\Omega}(R) = \sup\{m(E) : E \text{ is a subarc of } \{z \in \Omega : |z| = R\}\} \in [0, 2\pi]$. Then,

$$h(\Omega) = \frac{\pi}{A\cos^2(\phi)}.$$

Moreover, if A > 0, then Ω is not a $\mathrm{H}^{\mathrm{h}(\Omega)}$ -domain.

Domains with special geometric attributes - II

A planar domain Ω is said to be spiral-like of order $\lambda = e^{i\phi}$, $-\pi/2 < \phi < \pi/2$, if $ze^{\lambda t} \in \Omega$ whenever $t \leq 0$ and $z \in \Omega$. Spiral-like domains of order $\lambda = 1$ are also called star-like.

Theorem (Hansen – 1971)

Let Ω be a spiral-like planar domain of order $\lambda = e^{i\phi}$. Consider $A = \lim_{R \to +\infty} \alpha_{\Omega}(R)$, where $\alpha_{\Omega}(R) = \sup\{m(E) : E \text{ is a subarc of } \{z \in \Omega : |z| = R\}\} \in [0, 2\pi]$. Then,

$$h(\Omega) = \frac{\pi}{A\cos^2(\phi)}.$$

Moreover, if A > 0, then Ω is not a $\mathrm{H}^{\mathrm{h}(\Omega)}$ -domain.

Connection: Koenigs maps for elliptic dynamics in \mathbb{D} (Poggi-Corradini).

Domains with special geometric attributes - III

A planar domain Ω is said to be a Koenigs domain if $\Omega+1\subset\Omega.$

Domains with special geometric attributes - III

A planar domain Ω is said to be a Koenigs domain if $\Omega+1\subset\Omega.$

Theorem (Contreras, C-Z, Kourou, Rodríguez-Piazza – 2024)

If Ω is a Koenigs domain, then $h(\Omega) \in \{0\} \cup [1/2, +\infty]$. Moreover, $h(\Omega) \ge 1/2$ if and only if the complement of Ω is non-polar.

Domains with special geometric attributes - III

A planar domain Ω is said to be a Koenigs domain if $\Omega+1\subset\Omega.$

Theorem (Contreras, C-Z, Kourou, Rodríguez-Piazza – 2024)

If Ω is a Koenigs domain, then $h(\Omega) \in \{0\} \cup [1/2, +\infty]$. Moreover, $h(\Omega) \ge 1/2$ if and only if the complement of Ω is non-polar.

Connection: Koenigs maps for non-elliptic dynamics in \mathbb{D} .

Strict inclusions

Recall that

 $\bigcup_{p>0} H^p \subset N^+ \subset N.$

Strict inclusions

Recall that

$$\bigcup_{p>0} H^p \subset N^+ \subset N.$$

However, such inclusions are strict.

Strict inclusions

Recall that

$$\bigcup_{p>0} \mathrm{H}^{\mathrm{p}} \subset \mathrm{N}^{+} \subset \mathrm{N}.$$

However, such inclusions are strict (even using universal covering maps!).

The Bergman number

For p>0 , let A^p be the Bergman space. That is, the collection of all holomorphic maps on $\mathbb D$ with

$$\int_{\mathbb{D}} |f(z)|^p \, dA(z) < +\infty.$$

For a planar domain Ω , it is possible to consider its 0-Bergman number as

.)

$$\mathbf{b}_0 := \sup(\{0\} \cup \{p > 0 : \operatorname{Hol}(\mathbb{D}, \Omega) \subset A^p\}).$$

The Bergman number

For p > 0 and $\alpha > -1$, let A^p_{α} be the Bergman space. That is, the collection of all holomorphic maps on \mathbb{D} with

$$\int_{\mathbb{D}} |f(z)|^p \left(1 - |z|\right)^{\alpha} dA(z) < +\infty.$$

For a planar domain Ω , it is possible to consider its α -Bergman number as

$$\mathbf{b}_{\boldsymbol{\alpha}} := \sup(\{0\} \cup \{p > 0 : \operatorname{Hol}(\mathbb{D}, \Omega) \subset A^p_{\boldsymbol{\alpha}}\}).$$
The Bergman number

For p>0 and $\alpha>-1$, let A^p_{α} be the Bergman space. That is, the collection of all holomorphic maps on $\mathbb D$ with

$$\int_{\mathbb{D}} |f(z)|^p \left(1 - |z|\right)^{\alpha} dA(z) < +\infty.$$

For a planar domain Ω , it is possible to consider its α -Bergman number as

$$\mathbf{b}_{\boldsymbol{\alpha}} := \sup(\{0\} \cup \{p > 0 : \operatorname{Hol}(\mathbb{D}, \Omega) \subset A^p_{\boldsymbol{\alpha}}\}).$$

Karafyllia (2023), after a collaboration with Karamanlis, introduced the Bergman number of Ω as

$$\mathbf{b}(\Omega) := \inf(\{\mathbf{b}(f) : f \in \mathrm{Hol}(\mathbb{D}, \Omega)\}),\$$

where

$$\mathbf{b}(f) = \sup\left(\{0\} \cup \left\{\frac{p}{\alpha+2} : \alpha > -1, p > 0, f \in \mathbf{A}^p_\alpha\right\}\right) \in [0, +\infty].$$

Recall that $H^p \subset A^q_{\alpha}$ for $p \ge q/(\alpha + 2)$. This means that

$$h(\Omega) \le \frac{b_{\alpha}(\Omega)}{\alpha + 2} \le b(\Omega)$$

Recall that $H^p \subset A^q_\alpha$ for $p \ge q/(\alpha + 2)$. This means that

$$h(\Omega) \le \frac{b_{\alpha}(\Omega)}{\alpha+2} \le b(\Omega).$$

Indeed, the following result holds.

Theorem (Karafyllia, Karamanlis – 2023)

If $\boldsymbol{\Omega}$ is a simply connected planar domain, then

$$h(\Omega) = \frac{b_{\alpha}(\Omega)}{\alpha + 2} = b(\Omega).$$

Recall that $H^p \subset A^q_\alpha$ for $p \ge q/(\alpha + 2)$. This means that

$$h(\Omega) \le \frac{b_{\alpha}(\Omega)}{\alpha + 2} \le b(\Omega).$$

Indeed, the following result holds.

Theorem (Karafyllia, Karamanlis – 2023)

If Ω is a simply connected planar domain, then

$$h(\Omega) = \frac{b_{\alpha}(\Omega)}{\alpha + 2} = b(\Omega).$$

Also: New formulas for the Hardy/Bergman number of a domain.

Recall that $H^p \subset A^q_\alpha$ for $p \ge q/(\alpha + 2)$. This means that

$$h(\Omega) \le \frac{b_{\alpha}(\Omega)}{\alpha + 2} \le b(\Omega).$$

Indeed, the following result holds.

Theorem (Karafyllia, Karamanlis – 2023)

If Ω is a simply connected planar domain, then

$$h(\Omega) = \frac{b_{\alpha}(\Omega)}{\alpha + 2} = b(\Omega).$$

Also: New formulas for the Hardy/Bergman number of a domain. **Remark:** Such equalities may not hold in the general case: $\Omega = \mathbb{C} \setminus (\mathbb{Z} \times \mathbb{Z})$.

Strict inequalities

Theorem (Betsakos, C-Z – 2025)

• For every $p \in [0, +\infty)$ there exists a planar domain Ω with $p = h(\Omega) < b(\Omega) = b_{\alpha}(\Omega) = +\infty$.

Strict inequalities

Theorem (Betsakos, C-Z – 2025)

For every
$$p \in [0, +\infty)$$
 there exists a planar domain Ω with $p = h(\Omega) < b(\Omega) = b_{\alpha}(\Omega) = +\infty$.

• There exists a planar domain Ω which is regular for the Dirichlet problem but $1/2 = h(\Omega) < b(\Omega) = b_{\alpha}(\Omega) = +\infty$.

Strict inequalities

Theorem (Betsakos, C-Z – 2025)

For every
$$p \in [0, +\infty)$$
 there exists a planar domain Ω with $p = h(\Omega) < b(\Omega) = b_{\alpha}(\Omega) = +\infty$.

• There exists a planar domain Ω which is regular for the Dirichlet problem but $1/2 = h(\Omega) < b(\Omega) = b_{\alpha}(\Omega) = +\infty$.

Theorem (Betsakos, C-Z – 2025)

Assume that the planar domain Ω has the following properties:

- \bigcirc Ω is unbounded.
- **(** Let F be the union of all bounded components of $\mathbb{C}_{\infty} \setminus \Omega$. The set F is bounded.
- Consider the simply connected domain Ω' = Ω ∪ F. For all sufficiently large r > 0, the set Ω' ∩ {z ∈ C : |z| = r} has exactly one component.

Theorem (Betsakos, C-Z – 2025)

Assume that the planar domain Ω has the following properties:

- Ω is unbounded.
- **Q** Let F be the union of all bounded components of $\mathbb{C}_{\infty} \setminus \Omega$. The set F is bounded.
- Consider the simply connected domain Ω' = Ω ∪ F. For all sufficiently large r > 0, the set Ω' ∩ {z ∈ C : |z| = r} has exactly one component.

Then,

$$h(\Omega) = h(\Omega') = b(\Omega) = b(\Omega') = \frac{b_{\alpha}(\Omega)}{\alpha + 2} = \frac{b_{\alpha}(\Omega')}{\alpha + 2}.$$

Holomorphic function spaces and the geometry of image domains

Francisco José Cruz Zamorano Universidad de Sevilla (Spain)

