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Introduction

Statement of the problem

Let

▶ X be a holomorphic function space on the unit disk D,
▶ Ω be a planar domain (i.e., a connected and open subset of C).

Problem: Decide whether Hol(D,Ω) := {Holomorphic maps f : D → Ω} ⊂ X or not.

Definition

Ω is said to be an X-domain if Hol(D,Ω) ⊂ X.

Example. Let H∞ be the Hardy space of all bounded holomorphic maps on D. It is easy to
see that Ω is a H∞-domain if and only if it is bounded.

Today: X = Bloch B, BMOA, Nevanlinna N, Smirnov N+, Hardy Hp, Bergman Ap
α.
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A “no-example”

The problem might not be interesting for all holomorphic functions spaces X.

Let D be the Dirichlet space. That is, the space of all holomorphic maps f : D → C such that∫
D

∣∣f ′(z)
∣∣2 dA(z) < +∞.

For every z ∈ C and every R > 0 there exists a map f : D → D(z,R) such that f ̸∈ D.
Consequence: There are no D-domains.
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Reformulation

Definition

We say that X enjoys the subordination property if f ◦ φ ∈ X whenever f ∈ X and
φ : D → D is holomorphic.

Some classical spaces X enjoy this property. For instance, they do if composition operators are
bounded on X.

Lemma

Assume that X enjoys the subordination property and that Ω is hyperbolic (i.e., its
complement possesses at least two points). Then, the following are equivalent:

Ω is an X-domain.

Some (hence, all) universal covering map fΩ : D → Ω belongs to X.

Recall that, for a hyperbolic domain Ω, a universal covering map
fΩ : D → Ω is a holomorphic map with the following property:
For every f ∈ Hol(D,Ω) there exists φ ∈ Hol(D,D) such that f = fΩ ◦φ. D Ω

D

f

fΩ
φ
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PART I

Classical answers for classical spaces



Bloch

Let B be the Bloch space. That is, the space of all holomorphic maps on D for which

sup
z∈D

(1− |z|2)
∣∣f ′(z)

∣∣ < +∞.

Theorem (Seidel, Walsh – 1942)

Let Ω be a planar domain. For z ∈ Ω, consider R(z) = sup{r > 0 : D(z, r) ⊂ Ω}. The
following are equivalent:

Ω is a B-domain.

supz∈ΩR(z) < +∞.

Examples. C \ (Z× Z) is a B-domain (R(z) ≤
√
2/2).

Half-planes are not B-domains.
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BMOA

Let BMOA be the space of all holomorphic maps on D with bounded mean oscillation.
Equivalently, athose for which

sup
w∈D

(
sup

r∈[0,1)

∫ 2π

0
|fw(reiθ)|2dθ

)
< +∞, where fw(z) = f

(
z + w

1 + wz

)
− f(w), z ∈ D.

Theorem (Hayman, Pommerenke – 1978)

Let Ω be a planar domain. The following are equivalent:

Ω is a BMOA-domain.

There exist R,C > 0 such that, for all z ∈ Ω, cap((C \ Ω) ∩D(z,R)) ≥ C.

Recall that, given a set A ⊂ C, its logarithmic capacity is defined as

cap(A) = sup
µ

{
exp

(∫∫
log |z − w| dµ(z)dµ(w)

)}
,

where µ is any probability whose support is a compact set lying on A.
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A relation between Bloch and BMOA

It is known that BMOA ⊂ B, which yields that BMOA-domains are also B-domains.

However, Pommerenke (1977) proved that BMOA ∩ U = B ∩ U , where U is the family of all
univalent functions on D.

Corollary

Assume that Ω is simply connected. The following are equivalent:

Ω is a BMOA-domain.

Ω is a B-domain.
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Nevanlinna’s class

Nevanlinna’s class N is the space of all holomorphic maps on D with

sup
r∈(0,1)

∫
∂D

log+ |f(rξ)| dm(ξ) < +∞.

The following result for hyperbolic domains appears in Nevanlinna’s book (1936):

If cap(C \ Ω) = 0, then fΩ possesses radial limits almost nowhere (in particular, fΩ ̸∈ N).

If cap(C \ Ω) > 0, then fΩ ∈ N (in particular, it possesses radial limits almost
everywhere).

Corollary (Nevanlinna; Frostman)

Let Ω be a planar domain. The following are equivalent:

Ω is a N-domain.

The complement of Ω is not a polar set (i.e., its logarithmic capacity is positive).
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Smirnov’s class

Smirnov’s class N+ is the subspace of N for which

lim
r→1−

∫
∂D

log+ |f(rξ)| dm(ξ) =

∫
∂D

log+ |f(ξ)| dm(ξ).

Theorem (Ahern, Cohn – 1983)

Let Ω be a planar domain. The following are equivalent:

Ω is a N+-domain.

Infinity is a regular point for Ω.

For a planar domain Ω, a point ξ ∈ C∞ \ Ω is said to be regular for Ω if:

Either ξ ̸∈ ∂Ω,

or ξ ∈ ∂Ω and it is a regular point for Ω w.r.t. the Dirichlet problem (see Wiener’s
Criterion).
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PART II

Recent contributions



The Hardy number

For p > 0, let the Hardy space Hp be the family of all holomorphic maps on D such that

sup
r∈[0,1)

∫
∂D

|f(rξ)|pdm(ξ) < +∞.

Recall that Hp ⊃ Hq whenever 0 < p ≤ q ≤ +∞. Therefore, in order to study Hp-domains, we
recall the following notion:

Definition (first introduced by Hansen – 1970)

The Hardy number of a planar domain Ω is h(Ω) = sup({0} ∪ {p > 0 : Hol(D,Ω) ⊂ Hp}).

Properties. (1) If Ω1 ⊂ Ω2, then h(Ω1) ≥ h(Ω2). (2) h(aΩ+ b) = h(Ω) for a, b ∈ C, a ̸= 0.
Example. If Ω is a half-plane, then h(Ω) = 1. In other words: half-planes are Hp-domains for
0 < p < 1, and are not Hp-domains for p > 1. Notice also that half-planes are not
H1-domains!
Note. Karafyllia (2020) constructed a Hp-domain with Hardy number p (p = 3π).
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H1-domains!
Note. Karafyllia (2020) constructed a Hp-domain with Hardy number p (p = 3π).
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Harmonic measure

Definition

Let Ω be a planar domain whose complement is non-polar. The harmonic measure ω(z,B,Ω)
of B ⊂ ∂Ω at a point z ∈ Ω is the value at z of the solution of the generalized Dirichlet
problem in Ω with boundary values 1 on B and 0 on ∂Ω \B.

The map Ω ∋ z 7→ ω(z,B,Ω) is harmonic on
Ω for every B ⊂ ∂Ω.

The map ∂Ω ⊃ B 7→ ω(z,B,Ω) is a probability
measure for every z ∈ Ω.

z

B

Ω
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A description of the Hardy number of a domain

Theorem (Essén – 1981; Kim, Sugawa – 2011)

For a planar domain Ω with 0 ∈ Ω,

h(Ω) = lim inf
R→+∞

(
− logω(0, FR,ΩR)

logR

)
.

0

R
FR

ΩR
ΩR is the connected component of
Ω ∩ {z ∈ C : |z| < R} containing 0.

FR = ∂ΩR ∩ {z ∈ C : |z| = R}
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Simply connected domains

Lemma

For a hyperbolic domain Ω, h(Ω) = sup({0} ∪ {p > 0 : fΩ ∈ Hp}).

Corollary

If Ω ̸= C is simply connected, then h(Ω) ≥ 1/2.

Let θ ∈ (0, 2π]. If Ω = {z = reit : r > 0, 0 < t < θ}, θ ∈ (0, 2π], h(Ω) = π/θ.

Question

For every p ∈ {0} ∪ [1/2,+∞] we know a planar domain whose Hardy number is p. What
about p ∈ (0, 1/2)?

15 / 28



Simply connected domains

Lemma

For a hyperbolic domain Ω, h(Ω) = sup({0} ∪ {p > 0 : fΩ ∈ Hp}).

Corollary

If Ω ̸= C is simply connected, then h(Ω) ≥ 1/2.

Let θ ∈ (0, 2π]. If Ω = {z = reit : r > 0, 0 < t < θ}, θ ∈ (0, 2π], h(Ω) = π/θ.

Question

For every p ∈ {0} ∪ [1/2,+∞] we know a planar domain whose Hardy number is p. What
about p ∈ (0, 1/2)?

15 / 28



Simply connected domains

Lemma

For a hyperbolic domain Ω, h(Ω) = sup({0} ∪ {p > 0 : fΩ ∈ Hp}).

Corollary

If Ω ̸= C is simply connected, then h(Ω) ≥ 1/2.

Let θ ∈ (0, 2π]. If Ω = {z = reit : r > 0, 0 < t < θ}, θ ∈ (0, 2π], h(Ω) = π/θ.

Question

For every p ∈ {0} ∪ [1/2,+∞] we know a planar domain whose Hardy number is p. What
about p ∈ (0, 1/2)?

15 / 28



Simply connected domains

Lemma

For a hyperbolic domain Ω, h(Ω) = sup({0} ∪ {p > 0 : fΩ ∈ Hp}).

Corollary

If Ω ̸= C is simply connected, then h(Ω) ≥ 1/2.

Let θ ∈ (0, 2π]. If Ω = {z = reit : r > 0, 0 < t < θ}, θ ∈ (0, 2π], h(Ω) = π/θ.

Question

For every p ∈ {0} ∪ [1/2,+∞] we know a planar domain whose Hardy number is p. What
about p ∈ (0, 1/2)?

15 / 28



Filling the gap in (0, 1/2)

Theorem (Contreras, C-Z, Kourou, Rodŕıguez-Piazza – 2024)

For every p ∈ (0, 1/2) there exists a domain Ω ⊂ C such that h(Ω) = p.

Construction.

Rn
R
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Green function

Definition

Let Ω be a planar domain. A Green function for Ω is a map gΩ : Ω× Ω → (−∞,+∞] such
that, for all w ∈ Ω, the following properties hold:

1 z 7→ gΩ(z, w) is harmonic on Ω \ {w} and bounded outside every neighbourhood of w,

2 gΩ(w,w) = +∞. Moreover, gΩ(z, w) = − log |z − w|+O(1) as z → w,

3 for nearly every ξ ∈ ∂Ω, gΩ(z, w) → 0 as z → ξ.

If it exists, the Green function gΩ is unique. Indeed, it exists if and only if the complement of
Ω is non-polar.
Example.

gD(z, w) = log

∣∣∣∣1− zw

z − w

∣∣∣∣ , z, w ∈ D.
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Hardy number and Green function

Theorem (Betsakos, C-Z – 2024)

Let Ω be a planar domain whose complement is non-polar. Assume that 0 ∈ Ω. Consider

ΨΩ(R) =

∫ π

−π
gΩ(0, Reiθ)dθ, R > 0,

where gΩ(0, z) := 0 if z ̸∈ Ω.

Then,

h(Ω) = lim inf
R→+∞

(
− log(ΨΩ(R))

logR

)
.
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Hardy number and hyperbolic distance

Theorem (Karafyllia – 2020)

Let Ω ̸= C be a simply connected planar domain. Assume that 0 ∈ Ω. Then,

h(Ω) = lim inf
R→+∞

dΩ(0, FR)

log(R)
,

where FR = {z ∈ Ω : |z| = R}.

19 / 28



Domains with special geometric attributes - I

Let (xn)n∈Z be an increasing sequence of real numbers with
no accumulation points, and let (yn)n∈Z be a sequence of
positive numbers. Then, the planar domain

Ω = C \

(⋃
n∈Z

{xn + iy : |y| ≥ yn}

)

is called a comb domain.

Ω

Theorem (Karafyllia – 2022)

If Ω is a comb domain, then h(Ω) ≥ 1. Moreover, for every p ∈ [1,+∞] there exists a comb
domain Ω with h(Ω) = p.

Connection: Exit time of Brownian motion.
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Domains with special geometric attributes - II

A planar domain Ω is said to be spiral-like of order λ = eiϕ,
−π/2 < ϕ < π/2, if zeλt ∈ Ω whenever t ≤ 0 and z ∈ Ω.

Spiral-like domains of order λ = 1 are also called star-like.

Theorem (Hansen – 1971)

Let Ω be a spiral-like planar domain of order λ = eiϕ. Consider A = limR→+∞ αΩ(R), where
αΩ(R) = sup{m(E) : E is a subarc of {z ∈ Ω : |z| = R}} ∈ [0, 2π]. Then,

h(Ω) =
π

A cos2(ϕ)
.

Moreover, if A > 0, then Ω is not a Hh(Ω)-domain.

Connection: Koenigs maps for elliptic dynamics in D (Poggi-Corradini).
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Domains with special geometric attributes - III

A planar domain Ω is said to be a Koenigs domain if Ω+ 1 ⊂ Ω.

Ω

Theorem (Contreras, C-Z, Kourou, Rodŕıguez-Piazza – 2024)

If Ω is a Koenigs domain, then h(Ω) ∈ {0} ∪ [1/2,+∞]. Moreover, h(Ω) ≥ 1/2 if and only if
the complement of Ω is non-polar.

Connection: Koenigs maps for non-elliptic dynamics in D.
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Strict inclusions

Recall that ⋃
p>0

Hp ⊂ N+ ⊂ N.

However, such inclusions are strict (even using universal covering maps!).

Ω1

fΩ1 ∈ N, fΩ1 ̸∈ N+

Ω2

fΩ2 ∈ N+, fΩ2 ̸∈ Hp
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The Bergman number

For p > 0 , let Ap be the Bergman space. That is, the collection of all holomorphic maps on D
with ∫

D
|f(z)|p dA(z) < +∞.

For a planar domain Ω, it is possible to consider its 0-Bergman number as

b0 := sup({0} ∪ {p > 0 : Hol(D,Ω) ⊂ Ap}).

Karafyllia (2023), after a collaboration with Karamanlis, introduced the Bergman number of Ω
as

b(Ω) := inf({b(f) : f ∈ Hol(D,Ω)}),

where

b(f) = sup

(
{0} ∪

{
p

α+ 2
: α > −1, p > 0, f ∈ Ap

α

})
∈ [0,+∞].
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Relations among such numbers

Recall that Hp ⊂ Aq
α for p ≥ q/(α+ 2). This means that

h(Ω) ≤ bα(Ω)

α+ 2
≤ b(Ω).

Indeed, the following result holds.

Theorem (Karafyllia, Karamanlis – 2023)

If Ω is a simply connected planar domain, then

h(Ω) =
bα(Ω)

α+ 2
= b(Ω).

Also: New formulas for the Hardy/Bergman number of a domain.
Remark: Such equalities may not hold in the general case: Ω = C \ (Z× Z).
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Strict inequalities

Theorem (Betsakos, C-Z – 2025)

For every p ∈ [0,+∞) there exists a planar domain Ω with
p = h(Ω) < b(Ω) = bα(Ω) = +∞.

There exists a planar domain Ω which is regular for the Dirichlet problem but
1/2 = h(Ω) < b(Ω) = bα(Ω) = +∞.
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Equalities in non-simply connected cases

Theorem (Betsakos, C-Z – 2025)

Assume that the planar domain Ω has the following properties:

Ω is unbounded.

Let F be the union of all bounded components of C∞ \ Ω. The set F is bounded.

Consider the simply connected domain Ω′ = Ω ∪ F . For all sufficiently large r > 0, the
set Ω′ ∩ {z ∈ C : |z| = r} has exactly one component.

Then,

h(Ω) = h(Ω′) = b(Ω) = b(Ω′) =
bα(Ω)

α+ 2
=

bα(Ω
′)

α+ 2
.
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