21 Aprile 2021 17:00 CEST Zoom online
Ahmed Sebbar Chapman University

Vieta formula, distributions and the lemniscate

Abstract We give two extensions of the classical Vieta (or Viète) formula $\displaystyle \dfrac{2}{\pi} = \dfrac{\sqrt{2}}{2} \dfrac{\sqrt{2 + \sqrt{2}}}{2} \dfrac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdots$ The first extension leads to the classical Fabius function, an infinitely differentiable function that is nowhere analytic. The second extension discusses the corresponding formula for the elliptic curves with complex multiplication $y^2 = x^3 -Dx,\quad y^2 = x^3 -D$.

We give two extensions of the classical Vieta (or Viète) formula $\displaystyle \dfrac{2}{\pi} = \dfrac{\sqrt{2}}{2} \dfrac{\sqrt{2 + \sqrt{2}}}{2} \dfrac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdots$ The first extension leads to the classical Fabius function, an infinitely differentiable function that is nowhere analytic. The second extension discusses the corresponding formula for the elliptic curves with complex multiplication $y^2 = x^3 -Dx,\quad y^2 = x^3 -D$.

© 2021 GAA@polimi Generato con Hugo e inspirato al tema Resume Ultimo aggiornamento: 10 Aprile 2025